Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Front Cell Infect Microbiol ; 12: 988604, 2022.
Article in English | MEDLINE | ID: covidwho-20243442

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes
2.
Front Immunol ; 14: 1197908, 2023.
Article in English | MEDLINE | ID: covidwho-20240238

ABSTRACT

Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.


Subject(s)
Immunity, Innate , Respiratory System , Humans , Epithelium , Cytokines , Chemokines
3.
Clinical Immunology Communications ; 2:118-129, 2022.
Article in English | EMBASE | ID: covidwho-2300163

ABSTRACT

Emerging research shows that innate immunity can also keep the memory of prior experiences, challenging the long-held notion that immunological memory is only the domain of the adaptive immune cells. However, the absence of immunological memory in innate immune responses has recently been brought into question. Now it is known that after a few transient activations, innate immune cells may acquire immunological memory phenotype, resulting in a stronger response to a subsequent secondary challenge. When exposed to particular microbial and/or inflammatory stimuli, trained innate immunity is characterized by the enhanced non-specific response, which is regulated by substantial metabolic alterations and epigenetic reprogramming. Trained immunity is acquired by two main reprogramming, namely, epigenetic reprogramming and metabolic adaptation/reprogramming. Epigenetic reprogramming causes changes in gene expression and cell physiology, resulting in internal cell signaling and/or accelerated and amplified cytokine release. Metabolic changes due to trained immunity induce accelerated glycolysis and glutaminolysis. As a result, trained immunity can have unfavorable outcomes, such as hyper inflammation and the development of cardiovascular diseases, autoinflammatory diseases, and neuroinflammation. In this review, the current scenario in the area of trained innate immunity, its mechanisms, and its involvement in immunological disorders are briefly outlined.Copyright © 2022

4.
World J Biol Chem ; 14(2): 40-51, 2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2301824

ABSTRACT

BACKGROUND: Understanding the humoral response pattern of coronavirus disease 2019 (COVID-19) is one of the essential factors to better characterize the immune memory of patients, which allows understanding the temporality of reinfection, provides answers about the efficacy and durability of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and consequently helps in global public health and vaccination strategy. Among the patients who became infected with SARS-CoV-2, the majority who did not progress to death were those who developed the mild COVID-19, so understanding the pattern and temporality of the antibody response of these patients is certainly relevant. AIM: To investigate the temporal pattern of humoral response of specific immunoglobulin G (IgG) in mild cases of COVID-19. METHODS: Blood samples from 191 COVID-19 real-time reverse transcriptase-polymerase chain reaction (RT-qPCR)-positive volunteers from the municipality of Toledo/ Paraná/Brazil, underwent two distinct serological tests, enzyme-linked immunosorbent assay, and detection of anti-nucleocapsid IgG. Blood samples and clinicoepidemiological data of the volunteers were collected between November 2020 and February 2021. All assays were performed in duplicate and the manufacturers' recommendations were strictly followed. The data were statistically analyzed using multiple logistic regression; the variables were selected by applying the P < 0.05 criterion. RESULTS: Serological tests to detect specific IgG were performed on serum samples from volunteers who were diagnosed as being positive by RT-qPCR for COVID-19 or had disease onset in the time interval from less than 1 mo to 7 mo. The time periods when the highest number of participants with detectable IgG was observed were 1, 2 and 3 mo. It was observed that 9.42% of participants no longer had detectable IgG antibodies 1 mo only after being infected with SARS-CoV-2 and 1.57% were also IgG negative at less than 1 mo. At 5 mo, 3.14% of volunteers were IgG negative, and at 6 or 7 mo, 1 volunteer (0.52%) had no detectable IgG. During the period between diagnosis by RT-qPCR/symptoms onset and the date of collection for the study, no statistical significance was observed for any association analyzed. Moreover, considering the age category between 31 and 59 years as the exposed group, the P value was 0.11 for the category 31 to 59 years and 0.32 for the category 60 years or older, showing that in both age categories there was no association between the pair of variables analyzed. Regarding chronic disease, the exposure group consisted of the participants without any comorbidity, so the P value of 0.07 for the category of those with at least one chronic disease showed no association between the two variables. CONCLUSION: A temporal pattern of IgG response was not observed, but it is suggested that immunological memory is weak and there is no association between IgG production and age or chronic disease in mild COVID-19.

5.
Annu Rev Virol ; 9(1): 469-489, 2022 09 29.
Article in English | MEDLINE | ID: covidwho-2283359

ABSTRACT

Trained immunity is defined as the de facto memory characteristics induced in innate immune cells after exposure to microbial stimuli after infections or certain types of vaccines. Through epigenetic and metabolic reprogramming of innate immune cells after exposure to these stimuli, trained immunity induces an enhanced nonspecific protection by improving the inflammatory response upon restimulation with the same or different pathogens. Recent studies have increasingly shown that trained immunity can, on the one hand, be induced by exposure to viruses; on the other hand, when induced, it can also provide protection against heterologous viral infections. In this review we explore current knowledge on trained immunity and its relevance for viral infections, as well as its possible future uses.


Subject(s)
Vaccines , Virus Diseases , Humans , Immunity, Innate , Immunologic Memory
6.
Infect Dis Now ; 52(8S): S4-S6, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2268429

ABSTRACT

During the SARS CoV-2 primary infection, the neutralizing antibodies focused against the spike (S) glycoproteins are responsible for blockage of virus-host cell interaction. The cellular response mediated by CD4+ and CD8+ T-cells is responsible for control of viremia. Immune memory against SARS-CoV-2 depends on virus type, replication kinetics and route of penetration. The formation and persistence of germinal centers are critical for the generation of affinity-matured plasma cells and memory B cells capable of mediating durable immunity. They can persist up to 30 weeks after vaccination and several months after infection. Heterogeneity in the longevity of the vaccination-induced GC response is significant.


Subject(s)
COVID-19 , Viral Envelope Proteins , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , CD8-Positive T-Lymphocytes
7.
Chinese Journal of Microbiology and Immunology (China) ; 42(7):527-534, 2022.
Article in Chinese | EMBASE | ID: covidwho-2237331

ABSTRACT

The COVID-19 pandemic has become a serious global public health threat with more than 540 million infections and 6.32 million cases of death as of 25 June, 2022.Understanding whether COVID-19 patients can obtain persistent immune protection after recovery is crucial for vaccine development, disease control and epidemic forecast.The persistent immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is mainly derived from the immune memory.Thus, the generation and maintenance of immune memory specifically targeted to the virus were reviewed in this paper. Copyright © 2022 Society of Microbiology and Immunology. All rights reserved.

8.
Romanian Journal of Medical Practice ; 17(3):109-114, 2022.
Article in English | Scopus | ID: covidwho-2218188

ABSTRACT

Viral infections and vaccinations produce immune responses mostly through B cells (plasmocytes/ antibodies) and effector T cells (helper and cytotoxic). After removing the antigen, 90-95% of the effector cells disappear, but the remaining ones turn into T cells with long memory. The maintenance of cellular memory, the mode of information storage and the lifespan of T cells are insufficiently known. After measles, resident T cells in the plasma will offer protection only against the measles virus, generating a long period of immunodepression (immune amnesia).After the flu, memory T cells generate immune protection for 1-2 years for secretory IgA and longer for serum IgG. In SARS-CoV-2 infection, memory T cells (B and T) respond quickly to reinfection for 8-10 months. In conditions of intense stimulation in SARS-CoV-2, SARS-CoV, MARS infection, marked leukopenia occurs with lymphopenia generating immunodepression and high mortality, disorders similar to septic shock. An important role in these disorders is played by the host's genetic structure and epigenome. © 2022, Amaltea Medical Publishing House. All rights reserved.

9.
Front Immunol ; 13: 1094727, 2022.
Article in English | MEDLINE | ID: covidwho-2198924

ABSTRACT

SARS-CoV-2 mRNA vaccines prevent severe COVID-19 by generating immune memory, comprising specific antibodies and memory B and T cells. Although children are at low risk of severe COVID-19, the spreading of highly transmissible variants has led to increasing in COVID-19 cases and hospitalizations also in the youngest, but vaccine coverage remains low. Immunogenicity to mRNA vaccines has not been extensively studied in children 5 to 11 years old. In particular, cellular immunity to the wild-type strain (Wuhan) and the cross-reactive response to the Omicron variant of concern has not been investigated. We assessed the humoral and cellular immune response to the SARS-CoV-2 BNT162b2 vaccine in 27 healthy children. We demonstrated that vaccination induced a potent humoral and cellular immune response in all vaccinees. By using spike-specific memory B cells as a measurable imprint of a previous infection, we found that 50% of the children had signs of a past, undiagnosed infection before vaccination. Children with pre-existent immune memory generated significantly increased levels of specific antibodies, and memory T and B cells, directed against not only the wild type virus but also the omicron variant.


Subject(s)
COVID-19 , Vaccines , Humans , Child , Child, Preschool , BNT162 Vaccine , SARS-CoV-2 , COVID-19/prevention & control , Immunologic Memory , mRNA Vaccines , Antibodies
10.
Front Immunol ; 13: 1033770, 2022.
Article in English | MEDLINE | ID: covidwho-2198880

ABSTRACT

Background: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. Methods: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. Results: After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4+ T cell responses that overall were comparable to healthy individuals. Nonetheless, individuals with PAD syndromes had reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series, with the defect in IgG1 class-switching rescued following mRNA booster doses. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naïve PAD patients. Individuals that lacked detectable B cell responses following primary vaccination did not benefit from booster vaccination. Conclusion: Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals.


Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Adult , Humans , Immunoglobulin G , Memory B Cells , COVID-19 Vaccines , SARS-CoV-2 , Prospective Studies , COVID-19/prevention & control , RNA, Messenger , Vaccination
11.
Front Immunol ; 13: 1067749, 2022.
Article in English | MEDLINE | ID: covidwho-2163027

ABSTRACT

Vaccination against coronavirus disease 2019 (COVID-19) has contributed greatly to providing protection against severe disease, thereby reducing hospital admissions and deaths. Several studies have reported reduction in vaccine effectiveness over time against the Omicron sub-lineages. However, the willingness to receive regular booster doses in the general population is declining. To determine the need for repeated booster vaccinations in healthy individuals and to aid policymakers in future public health interventions for COVID-19, we aim to gain insight into the immunogenicity of the additional bivalent booster vaccination in a representative sample of the healthy Dutch population. The SWITCH ON study was initiated to investigate three main topics: i) immunogenicity of bivalent vaccines after priming with adenovirus- or mRNA-based vaccines, ii) immunological recall responses and reactivity with relevant variants after booster vaccination, and iii) the necessity of booster vaccinations for the healthy population in the future. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05471440.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Health Personnel , Vaccination , Health Status , Public Health
12.
Vaccines (Basel) ; 10(11)2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2143784

ABSTRACT

Although parental vaccines offer long-term protection against homologous strains, they rely exclusively on adaptive immune memory to produce neutralizing antibodies that are ineffective against emerging viral variants. Growing evidence highlights the multifaceted functions of trained immunity to elicit a rapid and enhanced innate response against unrelated stimuli or pathogens to subsequent triggers. This review discusses the protective role of trained immunity against respiratory pathogens and the experimental models essential for evaluating novel inducers of trained immunity. The review further elaborates on the potential of trained immunity to leverage protection against pathogens via the molecular patterns of antigens by pathogen recognition receptors (PPRs) on innate immune cells. The review also focuses on integrating trained innate memory with adaptive memory to shape next-generation vaccines by coupling each one's unique characteristics.

13.
Front Immunol ; 13: 947724, 2022.
Article in English | MEDLINE | ID: covidwho-2141980

ABSTRACT

Background: Asthma patients potentially have impaired adaptive immunity to virus infection. The levels of SARS-CoV-2-specific adaptive immunity between COVID-19 survivors with and without asthma are presently unclear. Methods: COVID-19 survivors (patients with asthma n=11, with allergies n=8, and COVID-19 only n=17) and non-COVID-19 individuals (asthmatic patients n=10 and healthy controls n=9) were included. The COVID-19 patients were followed up at about 8 months and 16 months after discharge. The clinical characteristics, lymphocyte subsets, memory T cells, and humoral immunity including SARS-CoV-2 specific antibodies, SARS-CoV-2 pseudotyped virus neutralization assay, and memory B cells were analyzed in these subjects. Results: The strength of virus-specific T cell response in COVID-19 survivors was positively correlated with the percentage of blood eosinophils and Treg cells (r=0.4007, p=0.0188; and r=0.4435, p=0.0086 respectively) at 8-month follow-up. There were no statistical differences in the levels of SARS-CoV-2-specific T cell response between the COVID-19 survivors with, and without, asthma. Compared to those without asthma, the COVID-19 with asthma survivors had higher levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) at the 8-month follow-up (p<0.05). Moreover, the level of NAbs in COVID-19 survivors was positively correlated with the percentage of Treg and cTfh2 cells (r=0.5037, p=0.002; and r=0.4846, p=0.0141), and negatively correlated with the percentage of Th1 and Th17 cells (r=-0.5701, p=0.0003; and r=-0.3656, p=0.0308), the ratio of Th1/Th2, Th17/Treg, and cTfh1/cTfh2 cell (r=-0.5356, r=-0.5947, r=-0.4485; all p<0.05). The decay rate of NAbs in the COVID-19 survivors with asthma was not significantly different from that of those without asthma at 16-month follow-up. Conclusion: The level of SARS-CoV-2-specific NAbs in COVID-19 survivors with asthma was higher than that of those without asthma at 8-month follow-up. The SARS-CoV-2-specific T cell immunity was associated with blood eosinophils and Treg percentages. The SARS-CoV-2-specific humoral immunity was closely associated with cTfh2/cTfh1 imbalance and Treg/Th17 ratio. According to the findings, asthmatic patients in COVID-19 convalescent period may benefit from an enhanced specific humoral immunity, which associates with skewed Th2/Th1 and Treg/Th17 immune.


Subject(s)
Asthma , COVID-19 , Adaptive Immunity , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Survivors
14.
Viruses ; 14(11)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116166

ABSTRACT

The world is now apparently at the last/recovery stage of the COVID-19 pandemic, starting from 29 December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the progression of time, several mutations have taken place in the original SARS-CoV-2 Wuhan strain, which have generated variants of concern (VOC). Therefore, combatting COVID-19 has required the development of COVID-19 vaccines using several platforms. The immunity induced by those vaccines is vital to study in order to assure total protection against SARS-CoV-2 and its emerging variants. Indeed, understanding and identifying COVID-19 protection mechanisms or the host immune responses are of significance in terms of designing both new and repurposed drugs as well as the development of novel vaccines with few to no side effects. Detecting the immune mechanisms for host protection against SARS-CoV-2 and its variants is crucial for the development of novel COVID-19 vaccines as well as to monitor the effectiveness of the currently used vaccines worldwide. Immune memory in terms of the production of neutralizing antibodies (NAbs) during reinfection is also very crucial to formulate the vaccine administration schedule/vaccine doses. The response of antigen-specific antibodies and NAbs as well as T cell responses, along with the protective cytokine production and the innate immunity generated upon COVID-19 vaccination, are discussed in the current review in comparison to the features of naturally induced protective immunity.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , SARS-CoV-2/genetics , COVID-19/prevention & control , Pandemics/prevention & control
15.
Front Immunol ; 13: 1032411, 2022.
Article in English | MEDLINE | ID: covidwho-2109771

ABSTRACT

Coronavac is a widely used SARS-CoV-2 inactivated vaccine, but its long-term immune response assessment is still lacking. We evaluated SARS-CoV-2-specific immune responses, including T cell activation markers, antigen-specific cytokine production and antibody response following vaccination in 53 adult and elderly individuals participating in a phase 3 clinical trial. Activated follicular helper T (Tfh), non-Tfh and memory CD4+ T cells were detected in almost all subjects early after the first vaccine dose. Activated memory CD4+ T cells were predominantly of central and effector memory T cell phenotypes and were sustained for at least 6 months. We also detected a balanced Th1-, Th2- and Th17/Th22-type cytokine production that was associated with response over time, together with particular cytokine profile linked to poor responses in older vaccinees. SARS-CoV-2-specific IgG levels peaked 14 days after the second dose and were mostly stable over one year. CoronaVac was able to induce a potent and durable antiviral antigen-specific cellular response and the cytokine profiles related to the response over time and impacted by the senescence were defined.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Viral , Cytokines , Immunity, Cellular , Immunoglobulin G , SARS-CoV-2 , Vaccination
16.
Chinese Journal of Microbiology and Immunology (China) ; 42(7):527-534, 2022.
Article in Chinese | Scopus | ID: covidwho-2055467

ABSTRACT

The COVID-19 pandemic has become a serious global public health threat with more than 540 million infections and 6.32 million cases of death as of 25 June, 2022.Understanding whether COVID-19 patients can obtain persistent immune protection after recovery is crucial for vaccine development, disease control and epidemic forecast.The persistent immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is mainly derived from the immune memory.Thus, the generation and maintenance of immune memory specifically targeted to the virus were reviewed in this paper. © 2022 Society of Microbiology and Immunology. All rights reserved.

17.
Front Immunol ; 13: 993754, 2022.
Article in English | MEDLINE | ID: covidwho-2055020

ABSTRACT

The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Animals , Antiviral Agents/therapeutic use , Humans , Models, Animal
18.
Clin Immunol ; 242: 109092, 2022 09.
Article in English | MEDLINE | ID: covidwho-2035867

ABSTRACT

Vaccines induce antibodies, but T cell responses are also important for protection against Coronavirus disease 2019. Here, we analyzed the frequency of memory T cells in infected and/or vaccinated individuals and observed a decrease in central memory T cells in individuals who were vaccinated following COVID-19 infection.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , Antibodies, Viral , CD8-Positive T-Lymphocytes/cytology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Memory T Cells/cytology , Vaccination
19.
Allergy ; 77(12): 3553-3566, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2019113

ABSTRACT

Since early 2020, the world has been embroiled in an ongoing viral pandemic with SARS-CoV-2 and emerging variants resulting in mass morbidity and an estimated 6 million deaths globally. The scientific community pivoted rapidly, providing unique and innovative means to identify infected individuals, technologies to evaluate immune responses to infection and vaccination, and new therapeutic strategies to treat infected individuals. Never before has immunology been so critically at the forefront of combatting a global pandemic. It has now become evident that not just antibody responses, but formation and durability of immune memory cells following vaccination are associated with protection against severe disease from SARS-CoV-2 infection. Furthermore, the emergence of variants of concern (VoC) highlight the need for immunological markers to quantify the protective capacity of Wuhan-based vaccines. Thus, harnessing and modulating the immune response is key to successful vaccination and treatment of disease. We here review the latest knowledge about immune memory generation and durability following natural infection and vaccination, and provide insights into the attributes of immune memory that may protect from emerging variants.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Immunologic Memory , Vaccination , Pandemics
20.
Front Immunol ; 13: 943331, 2022.
Article in English | MEDLINE | ID: covidwho-2009867

ABSTRACT

The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.


Subject(s)
Memory T Cells , Respiratory Syncytial Virus, Human , COVID-19 , Humans , Immunologic Memory , Lung , Reinfection , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL